Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The novelty of this study is to present a multilayer framework for predicting the air‐entrained porosity of cement paste based on the molecular characteristics of nonionic surfactants. Air‐entraining agents enhance concrete durability against freeze–thaw damage; however, their development is labor‐intensive and cost‐prohibitive. This research implements a multilayer approach by incorporating three hierarchical layers: the molecular properties of nonionic surfactants (Layer 1), their physicochemical characteristics (Layer 2), and the air‐entrained microstructural porosity of hardened cement paste (Layer 3). By integrating key molecular parameters—such as hydrocarbon chain length, hydrophobicity, and molecular weight—this model effectively predicts the air‐entrained porosity of cement paste. An extensive experimental study was conducted to characterize the physicochemical and microstructural properties of 59 distinct nonionic surfactants. To the best of our knowledge, this represents the first comprehensive dataset of molecular and physicochemical properties of air‐entraining agents reported in the literature. Moreover, no prior study has established such a detailed link between the molecular characteristics of nonionic surfactants and cement microstructure. This dataset served as the foundation for developing the predictive model, which demonstrated the feasibility of this approach in predicting the air‐entraining performance of nonionic admixtures. The developed model facilitates the rapid screening of candidate surfactants and the optimization of their molecular structure while minimizing the need for extensive experimentation. Furthermore, distinct trends emerged from the dataset, offering new insights into the interdependent properties that govern air entrainment in cementitious materials.more » « lessFree, publicly-accessible full text available August 5, 2026
-
Tourism contributes to groundwater pollution, but quantifying its exact impact is challenging due to the presence of multiple pollution sources. However, the COVID-19 pandemic presented a unique opportunity to conduct a natural experiment and assess the influence of tourism on groundwater pollution. One such tourist destination is the Riviera Maya in Quintana Roo, Mexico (specifically Cancun). Here, water contamination occurs due to the addition of sunscreen and antibiotics during aquatic activities like swimming, as well as from sewage. In this study, water samples were collected during the pandemic and when tourists returned to the region. Samples were taken from sinkholes (cenotes), beaches, and wells then tested using liquid chromatography for antibiotics and active ingredients found in sunscreens. The data revealed that contamination levels from specific sunscreens and antibiotics persisted even when tourists were absent, indicating that local residents significantly contribute to groundwater pollution. However, upon the return of tourists, the diversity of sunscreen and antibiotics found increased, suggesting that tourists bring along various compounds from their home regions. During the initial stages of the pandemic, antibiotic concentrations were highest, primarily due to local residents incorrectly using antibiotics to combat COVID-19. Additionally, the research found that tourist sites had the greatest contribution to groundwater pollution, with sunscreen concentration increasing. Furthermore, installation of a wastewater treatment plant decreased overall groundwater pollution. These findings enhance our understanding of the pollution contributed by tourists in relation to other pollution sources.more » « less
An official website of the United States government
